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Abstract: In this paper we have discussed some theorems for 
asymptotic stability of linear scalar equations and definitions for 
linearization of nonlinear difference equations. We have also 
given appropriate examples with graphs.  
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I. INTRODUCTION 
   

The topic of difference equations are interesting and attractive 
to many mathematicians working in this field. It is a fertile 
research area. These equations are used to model many real-
life phenomena, including economics, biology, etc refer 
[1,2,3]. 

 
Agarwal and Elsayed [4] explored the global stability, 
periodicity feature, and provided the solution to some special 
examples of the difference equation. This is just one example 
of the behaviour of the solution of difference equations that 
has been studied by numerous researchers. 

𝑦 = 𝑎 +
𝑑𝑦 𝑦

𝑏 − 𝑐𝑦
 

Elabbasy, El-Metwally and Elsayed [5-6] studied the 
periodicity, boundedness, and global stability of the difference 
equations, and provided solutions for some particular 
circumstances 

𝑦 = 𝑎𝑦 − ,  

𝑦 =
∝ 𝑦

𝛽 + 𝛾 ∏ 𝑦
 

II. Stability Theory 
 

Early work on control systems in mathematics was conducted 
using differential equations. J. C. Maxwell examined the 
stability of Watt's flyball governor. He demonstrated a method 
for linearizing the differential equations of motion in order to 
derive the system's characteristic equation. By examining how 
system factors affect stability, he also demonstrated that the 
system is stable if the roots of the characteristic equation 
contain negative real portions. E. J. Routh provided a 
numerical method to determine if the roots of a characteristic 

equation are stable. Independent of Maxwell, the Russian I. I. 
Vyshnegradsky examined the stability of regulators using  

 

differential equations. A. B. Stodola used Vyshnegradsky's 
methods to evaluate the regulation of a water turbine. Unaware 
of the contributions made by Maxwell and Routh, he assigned 
A. Hurwitz the task of determining the stability of the  

 

characteristic equation, and Hurwitz came up with an original 
solution. 

 
 

III. Jury’s Stability Criterion 

The behaviour of the linearized system affects the local 
stability principle for first-order systems or higher-order 
difference equations. Take into consideration a first order 
system with 𝑛 equations, 

 

𝑌 = (𝑦 , 𝑦 , 𝑦 , … , 𝑦 ) , 

𝑌 = 𝐹(𝑌 )                                     (3.1)  

where  

𝐹 = (𝑓 , 𝑓 , 𝑓 , … , 𝑓 )  and 𝑓 = 𝑓 (𝑦!, 𝑦 , 𝑦 , … , 𝑦 ),   

𝑖 = 1,2, … , 𝑛. Let us consider system (3.1) has equilibrium 
point at 𝑌. Then if 𝑈 = 𝑌 − 𝑌, linearisation of system (3.1) 
about 𝑌 results to the system 

𝑈 = 𝐽𝑈                                                 (3.2) 

In (3.2) 𝐽 represents the Jacobian matrix examined at  𝑌, 

𝐽 =

⎝

⎜
⎜
⎛

( ) ( )
⋯

( )

( ) ( )
⋯

( )

⋮
( )

⋮
( )

⋯
⋯

⋮
( )

⎠

⎟
⎟
⎞

                        (3.3) 

The eigen values of the Jacobian matrix determine the local 
asymptotic stability of 𝑌, again that is determined by the 
existence of partial derivatives in a region containing 𝑌. So, for 
𝑌 to be locally asymptotically stable, we require that the partial 
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derivatives of if should be continuous in an open set 

containing 𝑌. 

      The eigenvalues of the Jacobian matrix are the solutions of 
the characteristic equation 

det(𝐽 − 𝜆𝐼) = 0 

Eigenvalues are the roots of the following 𝑛𝑡ℎ-degree 
characteristic polynomial : 

𝜔(𝜆) = 𝜆 + 𝑎 𝜆 + 𝑎 𝜆 + ⋯ + 𝑎             (3.4) 

As the function if  is real valued, the coefficients in (3.4) are 

real. For 𝑛 = 2,𝑎 = −𝑇𝑟(𝐽) and𝑎 = det (𝐽). The Jury 
conditions or Jury test refers to the requirements that must be 
met for local asymptotic stability. These conditions  make sure 
that the zeros of the characteristic polynomial (3.4) satisfy 

 𝜆 < 1. 

Theorem 3.1. If the solutions 𝜆 , 𝑖 = 1,2, … , 𝑛 of (3.4), 𝜔(𝜆) =
0 satisfy |𝜆 | < 1, then  

 𝜔(1) = 1 + 𝑎 + 𝑎 + ⋯ + 𝑎 > 0, 
 (−1) 𝜔(−1) = 1 − 𝑎 + 𝑎 − ⋯ + (−1) 𝑎 > 0 

(alternate in sign), 
 |𝑎 | < 1 

       As a fact 𝑎  is the product of the eigenvalues, 𝑎 =
𝜆 𝜆 … 𝜆 , so the third condition of theorem 3.1. is 
followed. There doesn’t exist a root |𝜆 | ≥ 1,  if one of the 
preceding conditions is not satisfied.  

 

By using the direct approach of Lyapunov, one is able to 
examine the qualitative properties of the solutions without 
typically figuring out the solutions themselves. As a result, we 
view it as one of the key instruments in stability theory. 
Finding specific real-valued functions with Lyapunov names is 
necessary for the method to work. Finding the appropriate 
Lyapunov function for a given equation is the direct method's 
main drawback. We consider the autonomous difference 
equation. 

 

Lyapunov’s method 

      The control theory was influenced by A.M. Lyapunov's 
work. Using a broad conception of energy, he looked into the 
stability of nonlinear differential equations in 1892. Although 
his work was used and continued in Russia, sadly, the West 
was not ready for his beautiful theory, and it was not until 
about 1960 that its significance was ultimately understood. 

𝑦(𝑛 + 1) = 𝑓(𝑦(𝑛))                                (3.5) 
Where 𝑓: ℝ , 𝐺 ⊂ ℝ  is continuous. We consider that 𝑦 is an 
equilibrium point, that is 𝑓(𝑦) = 𝑦. Let 𝑉: ℝ → ℝ, be a real 
valued function. The variation of 𝑉 with respect to (3.5) would 
be defined as    

∆𝑉(𝑦) = 𝑉 𝑓(𝑦) − 𝑉(𝑦)                   (3.6) 

and 

∆𝑉 𝑦(𝑛) = 𝑉 𝑦(𝑛 + 1) − 𝑉(𝑦(𝑛))       (3.7) 

Observe that, if ∆𝑉(𝑦) ≤ 0, then 𝑉 is decreasing along the 
solution of (3.5). The function 𝑉 is called a Lyapunov function 
on a subset 𝐻 of ℝ , if : 

 𝑉 is continuous on 𝐻. 
 ∆𝑉(𝑦) ≤ 0, whenever 𝑦 and 𝑓(𝑦) is in 𝐻. 

Theorem 3.2.  𝒚 is stable,  if V is Lyapunov function for (3.5) 
in a neighbourhood H of the equilibrium point 𝒚 and V is 
positive definite with respect to 𝒚. Also, 𝒚 is asymptotically 
stable if, ∆𝑉(𝑦) < 0 wherever 𝑦, 𝑓(𝑦) ∈ 𝐻 and 𝑦 ≠ 𝑦. In 
addition, 𝑦 is globally asymptotically stable if, 𝐺 = 𝐻 = ℝ  
and 𝑉(𝑦) → ∞ and ‖𝑦‖ → ∞ . 

 
 

IV. Asymptotic Stability Theorems of Linear Scalar 
Equations 

 
Take into account the second order difference equation 

𝑦 + 𝜔 𝑦 + 𝜔 𝑦 = 0                        (4.1) 

the characteristic equation is  

𝜆 + 𝜔 𝜆 + 𝜔 = 0                                   (4.2) 

Theorem 4.1. [7] The condition 

1 + 𝜔 + 𝜔 > 0, 1 − 𝜔 + 𝜔 > 0, 

1 − 𝜔 > 0 

 

are necessary and sufficient  conditions, so that the 
equilibrium point of equation (4.1) would be asymptotically 
stable. These conditions can be expressed as 

|𝜔 | < 1 + 𝜔 < 2 

Theorem 4.2. [7] The zero solution of (4.1) is asymptotically 
stable if and only if 

|𝜔 | < 1 + 𝜔 < 2 

Theorem 4.3. [7] The zero solution of the third order 
homogeneous difference equation 

𝑦 + 𝜔 𝑦 + 𝜔 𝑦 + 𝜔 𝑦 = 0                     (4.3) 

will be stable if and only if 

|𝜔 + 𝜔 | < 1 + 𝜔 , and |𝜔 − 𝜔 𝜔 | < 1 − 𝜔  

Consider the 𝑟th-order equation 

𝑦 − 𝑎𝑦 + 𝑏𝑦                                                    (4.4) 

Theorem 4.4. [7] Let 𝑎 be a non-negative real number, 𝑏 an 
arbitrary real number and 𝑟 be a positive integer. The zero 
solution of (4.4) is asymptotically stable if and only if 
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|𝑎| <
𝑟 + 1

𝑟
 

and 

1. |𝑎| < 𝑏 < (𝑎 + 1 − 2|𝑎| cos 𝜙)  

2. |𝑏 − 𝑎| < 1 and |𝑏| < (𝑎 + 1 − 2|𝑎| cos 𝜙)   

for r even, 

where 𝜙  is the solution in 0,
( )

 of  

sin(𝑘𝜃)

sin(𝑘 + 1)𝜃
=

1

|𝑎|
 

Lets get to the general form of the 𝑟th-order homogeneous 
difference equation 

𝑦 + 𝜔 𝑦 + 𝜔 𝑦 + ⋯ + 𝜔 𝑦 + 𝜔 𝑦    
(4.5) 

Theorem 4.5. [7] The zero solution of (4.5) is asymptotically 
stable if 

∑ |𝜔 | < 1                                   (4.6) 

also the zero solution of this equation is unstable if 

|𝜔 | − ∑ |𝜔 | > 1                       (4.7) 

 

V. Linearization of Non-linear Equations 

Take into account the 𝑟 + 1 order difference equation which is  
of the form 

       𝑦 = 𝑓(𝑦 , 𝑦 , … , 𝑦 )                  (5.1) 

where 𝑓: 𝐼 → 𝐼 is a continuous differentiable function and 
𝑦 , 𝑦 , … , 𝑥  are the initial conditions. So there exists a 
unique solution {𝑥 }  such that 𝑦(−𝑟) = 𝑦 , 𝑦(−𝑟 +
1) = 𝑦 , … , 𝑥(0) = 𝑥  
Definition 5.1. An equilibrium point of (5.1) is the point 𝑦 ∈ 𝐼 
such that 

𝑓(𝑦, 𝑦, 𝑦, … 𝑦) = 𝑦 

Definition 5.2. The equilibrium point 𝑦 of (5.1) is called 
locally stable if for any given 𝜖 > 0 there exists 𝛿 > 0 such 
that for all 𝑦 , 𝑦 , … , 𝑦 , 𝑦 ∈ 𝐼  if 

|𝑦 − 𝑦| + |𝑦 − 𝑦| + |𝑦 − 𝑦| < 𝛿,, 

then 

|𝑦 − 𝑦| < 𝜖 for all 𝑛 ≥ −𝑘 

Definition 5.3. The equilibrium point 𝑦 of (5.1) is called 
locally asymptotically stable when x is locally stable and there 
exists 𝛾 > 0 such that for all 𝑦 , 𝑦 , … , 𝑦 , 𝑦 ∈ 𝐼  if  

|𝑦 − 𝑦| + |𝑦 − 𝑦| + |𝑦 − 𝑦| < 𝛾, 

then 

lim
→

𝑦 = 𝑦  

Definition 5.4. The equilibrium point 𝑦 of (5.1) is said to be 
global attractor if for all 𝑦 , 𝑦 , … , 𝑦 , 𝑦 ∈ 𝐼, we get 

lim
→

𝑦 = 𝑦 . 

Definition 5.5. When an equilibrium point 𝑥 of (5.1) is locally 
stable as well as global attractor, then it is called as globally 
asymptotically stable.  

We can linearize (5.1) around 𝑥 if 𝑓 is continuously 
differentiable in a region around 𝑥. Hence, by chain rule the 
linearized equation around 𝑦 becomes 

𝑢 = 𝜔 𝑢 + 𝜔 𝑢 + ⋯ + 𝑤 𝑢                  (5.2) 

where 

𝜔 =
𝜕𝑓

𝜕𝑢
(𝑦, 𝑦, … , 𝑦) 

The characteristic equation of (5.2) is given by 

𝜆 − 𝜔 𝜆 − 𝜔 𝜆 − ⋯ − 𝜔 = 0              (5.3) 

Example 5.1: Let us observe the difference equation 

𝑦 = 𝑦 − 𝑦 + 1 

So, 𝑓(𝑦) = 𝑦 − 𝑦 + 1 also by allowing 𝑦 = 𝑦 − 𝑦 + 1, We 
may deduce that there is only one equilibrium point for this 
equation 𝑦 = 1. 

We can define equilibrium point graphically as a point in the x-
coordinate where the diagonal line 𝑦 = 𝑥 and the graph of f 
intersects each other. 

 

Fig. 1. Equilibrium points of  𝑦 = 𝑦 − 𝑦 + 1 

Example 5.2: The equation 

𝑦 = 𝑦  

has three fixed points. Figure 1.2 below illustrates this, and 
they are 𝑦 = −1,0,1. 
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Fig. 2. Equilibrium points of 𝑦 = 𝑦  

Analysing the behaviour of a dynamical system's solutions 
close to an equilibrium point is one of the fundamental goals of 
dynamical system study. The stability theory is the name of 
this subject. 

Example 5.3: Let us take the first order difference equation 

𝑦 =
1

2
𝑦 − 1 

then the equilibrium point of the function 𝑓(𝑦) = 𝑦 − 1 is 

the point 𝑦 = −2, hence the fixed point of our difference 
equation is 𝑦 = −2. If we use the equation's beginning 
condition as 𝑦 = 1, following that as the figure 1.3makes it 
clear, In addition to being a stable point, 𝑦 = −2 is also 
asymptotically stable.  

 
Fig. 3. The stability of 𝑦 = −2 of 𝑦 = 𝑦 − 1 

Example 5.4: Consider the difference equation 

𝑦 = 𝑦  

The equilibrium points are 𝑦 = 0, 𝑦 = 1. It is clear from the 
figure 1.4 

 

Fig. 4. The stability of 𝑦 = 1 of 𝑦 = 𝑦  

that 𝑦 = 1 is unstable equilibrium point. 

Example 5.5: Consider the non-linear difference equation 

𝑦 = 2𝑦 −
1

𝑦
 

The equilibrium point can be located using 

𝑦 = 2𝑦 −
1

𝑦
 

This could be expressed as 

2𝑦 − 𝑦 − 1 = 0 

which is  

(𝑦 − 1)(2𝑦 + 𝑦 + 1) = 0 

So, this equation's equilibrium point is �̅� = 1.. 

Take 𝑓(𝑝, 𝑞) = 2𝑝 −  then, 

𝜕𝑓

𝜕𝑝
= 4𝑝,

𝜕𝑓

𝜕𝑞
=

1

𝑞
 

Therefore, the linearized equation we use to describe the 
equilibrium point 𝑦 = 1 is 

𝑧 = 4𝑧 + 𝑧  

which can be written as  

𝑧 − 4𝑧 − 𝑧 = 0 
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